

Welcome to Perfana’s documentation!

Performance Analytics (Perfana) is a toolbox to calculate various analytics and statistics for financial engineering. It also contains shorthands for plotting common charts.

Perfana package

	Getting Start

	Reference - Function Reference
	Core API

	Monte Carlo API

	Datasets API

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Python version support

Only Python 3.6 and 3.7.

Installing Perfana

Perfana can be installed via pip from PyPI [https://pypi.org/project/perfana/]

pip install perfana

Alternatively, you can install it via conda with

conda install -c danielbok perfana

API Reference

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Core

Core API applies to a series of methods that apply to a pandas DataFrame or Series or iterable TimeSeries like object.

	Core API
	Relative
	Correlation Measure

	Relative Price Index

	Returns
	Active Premium

	Annualized Returns

	Excess Returns

	Relative Returns

	Risk
	Drawdown

	Drawdown Summary

Monte Carlo

Monte Carlo API applies to a series of methods that apply to a 3 dimensional data cube where the dimensions represent the time, trials and assets respectively. For example, if the simulated cube projects 10 years of monthly data for 8 assets for 10000 trials (that is 10000 simulations), the cube will be a numpy array with shape (120, 10000, 8).

	Monte Carlo API
	Returns
	Annualized Returns

	Annualized Returns against Benchmark

	Annualized Quantile Returns

	Annualized Quantile Returns against Benchmark

	Returns Attribution

	Returns Distribution

	Returns Path

	Risk
	Portfolio Beta against Asset

	Portfolio Correlation against Asset

	CVaR Attribution

	CVaR Diversification Ratio

	Portfolio CVaR

	Diversification Ratio

	Drawdown Statistics

	Portfolio Empirical Covariance Matrix

	Risk Performance Benchmark

	Risk Performance Benchmark

	Tail Loss Statistics

	Tracking Error

	Volatility Attribution

	Portfolio Volatility

	Sensitivity
	Sensitivity of Portfolio to Shocks

	Sensitivity of Portfolio's Annualized Returns to Shock

	Sensitivity of Portfolio's Annualized Volatility to Shock

	Sensitivity of Portfolio's CVaR to Shock

Datasets

Data sets contain a series of python data objects to help get the user started on the package.

	Datasets API
	Load Sample Simulation Data Cube

	Load ETF Data

	Load Swiss Market Index

Core API

Core API applies to a series of methods that apply to a pandas DataFrame or Series or iterable TimeSeries like object.

	Relative
	Correlation Measure

	Relative Price Index

	Returns
	Active Premium

	Annualized Returns

	Excess Returns

	Relative Returns

	Risk
	Drawdown

	Drawdown Summary

Relative

Relative API contains a series of functions that apply to a pandas DataFrame or Series or iterable TimeSeries
like object to calculate various forms of relative comparison measures.

	Correlation Measure

	Relative Price Index

Correlation Measure

	
perfana.core.relative.correlation_measure(portfolio, benchmark, duration='monthly', *, is_returns=False, date_as_index=True)

	Computes the correlation measure through time. The data is assumed to be daily. If the
benchmark is a single series, a single TimeSeriesData will be returned. Otherwise,
a dictionary of TimeSeries will be returned where the keys are each individual benchmark

	Parameters

	
	portfolio (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The portfolio values vector or matrix

	benchmark (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The benchmark values vector or matrix

	duration (Union[str, int]) – Duration to calculate the relative price index with. Either a string or positive integer value
can be specified. Supported string values are ‘day’, ‘week’, ‘month’, ‘quarter’, ‘semi-annual’
and ‘year’

	is_returns – Set this to true if the portfolio and benchmark values are in “returns” instead of raw values
(i.e. prices or raw index value)

	date_as_index – If true, returns the date as the dataframe’s index. Otherwise, the date is placed as a column
in the dataframe

	Returns

	A DataFrame of the correlation measure between the assets in the portfolio against the benchmark
If multiple series are included in the benchmark, returns a dictionary where the keys are the
benchmarks’ name and the values are the correlation measure of the portfolio against that
particular benchmark

	Return type

	TimeSeriesData or dict of TimeSeriesData

Examples

>>> from perfana.datasets import load_etf
>>> from perfana.core import correlation_measure
>>> etf = load_etf().dropna()
>>> returns = etf.iloc[:, 1:]
>>> benchmark = etf.iloc[:, 0]
>>> correlation_measure(returns, benchmark, 'monthly').head()
 BND VTI VWO
Date
2007-05-10 -0.384576 0.890783 0.846000
2007-05-11 -0.525299 0.911693 0.857288
2007-05-14 -0.482180 0.912002 0.855114
2007-05-15 -0.439073 0.913992 0.842561
2007-05-16 -0.487110 0.899859 0.837781

Relative Price Index

	
perfana.core.relative.relative_price_index(portfolio, benchmark, duration='monthly', *, is_returns=False, date_as_index=True)

	Computes the relative price index through time. The data is assumed to be daily. If the
benchmark is a single series, a single TimeSeriesData will be returned. Otherwise,
a dictionary of TimeSeries will be returned where the keys are each individual benchmark

Notes

The relative price index at a particular time \(t\) for an asset \(a\) against its
benchmark \(b\) is given by

\[RP_{a, t} = r_{a, t - d} - r_{b, t - d}\]

where d is the duration. For example, if the duration is ‘monthly’, \(d\) will be
22 days.

	Parameters

	
	portfolio (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The portfolio values vector or matrix

	benchmark (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The benchmark values vector or matrix

	duration (Union[str, int]) – Duration to calculate the relative price index with. Either a string or positive integer value
can be specified. Supported string values are ‘day’, ‘week’, ‘month’, ‘quarter’, ‘semi-annual’
and ‘year’

	is_returns – Set this to true if the portfolio and benchmark values are in “returns” instead of raw values
(i.e. prices or raw index value)

	date_as_index – If true, returns the date as the dataframe’s index. Otherwise, the date is placed as a column
in the dataframe

	Returns

	A DataFrame of the relative price index between the assets in the portfolio against the benchmark
If multiple series are included in the benchmark, returns a dictionary where the keys are the
benchmarks’ name and the values are the relative price index of the portfolio against that
particular benchmark

	Return type

	TimeSeriesData or dict of TimeSeriesData

Examples

>>> from perfana.datasets import load_etf
>>> from perfana.core import relative_price_index
>>> etf = load_etf().dropna()
>>> returns = etf.iloc[:, 1:]
>>> benchmark = etf.iloc[:, 0]
>>> relative_price_index(returns, benchmark, 'monthly').head()
 BND VTI VWO
Date
2007-05-10 -0.016000 0.009433 0.000458
2007-05-11 -0.031772 0.008626 0.013009
2007-05-14 -0.016945 0.014056 0.008658
2007-05-15 -0.002772 0.020824 0.018758
2007-05-16 0.002791 0.025402 0.028448

Returns

Returns API contains a series of functions that apply to a pandas DataFrame or Series or iterable TimeSeries like object
to calculate various forms of returns.

	Active Premium

	Annualized Returns

	Excess Returns

	Relative Returns

Active Premium

	
perfana.core.returns.active_premium(ra, rb, freq=None, geometric=True, prefixes=('PRT', 'BMK'))

	The return on an investment’s annualized return minus the benchmark’s annualized return.

	Parameters

	
	ra (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The assets returns vector or matrix

	rb (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The benchmark returns

	freq (Optional[str]) – Frequency of the data. Use one of monthly, quarterly, semi-annually, yearly

	geometric – If True, calculates the geometric returns. Otherwise, calculates the arithmetic returns

	prefixes – Prefix to apply to overlapping column names in the left and right side, respectively. This is also applied
when the column name is an integer (i.e. 0 -> PRT_0). It is the default name of the Series data if there
are no name to the Series

	Returns

	Active premium of each strategy against benchmark

	Return type

	TimeSeriesData

Examples

>>> from perfana.datasets import load_etf
>>> from perfana.core import active_premium
Get returns starting from the date where all etf has data
>>> etf = load_etf().dropna().pa.to_returns().dropna()
>>> active_premium(etf, etf)
 VBK BND VTI VWO
VBK 0.000000 -0.055385 -0.010407 -0.063939
BND 0.055385 0.000000 0.044979 -0.008554
VTI 0.010407 -0.044979 0.000000 -0.053532
VWO 0.063939 0.008554 0.053532 0.000000
>>> active_premium(etf.VBK, etf.BND)
 VBK
BND 0.055385

Annualized Returns

	
perfana.core.returns.annualized_returns(r, freq=None, geometric=True)

	Calculates the annualized returns from the data

The formula for annualized geometric returns is formulated by raising the compound return to the number of
periods in a year, and taking the root to the number of total observations:

\[\prod_i^N(1 + r_i)^{\frac{s}{N}} - 1\]

where \(s\) is the number of observations in a year, and \(N\) is the total number of observations.

For simple returns (geometric=FALSE), the formula is:

\[\frac{s}{N} \sum^N_i r_i\]

	Parameters

	
	r (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – Numeric returns series or data frame

	freq (Optional[str]) – Frequency of the data. Use one of daily, weekly, monthly, quarterly, semi-annually, yearly

	geometric – If True, calculates the geometric returns. Otherwise, calculates the arithmetic returns

	Returns

	Annualized returns

	Return type

	float or Series

Examples

>>> from perfana.datasets import load_etf
>>> from perfana.core import annualized_returns
Get returns starting from the date where all etf has data
>>> etf = load_etf().dropna().pa.to_returns().dropna()
VBK 0.091609
BND 0.036224
VTI 0.081203
VWO 0.027670
dtype: float64
>>> annualized_returns(etf.VWO)
0.02767037698144148

Excess Returns

	
perfana.core.returns.excess_returns(ra, rb, freq=None, geometric=True)

	An average annualized excess return is convenient for comparing excess returns

Excess returns is calculated by first annualizing the asset returns and benchmark returns stream. See the docs for
annualized_returns() for more details. The geometric returns formula is:

\[r_g = \frac{r_a - r_b}{1 + r_b}\]

The arithmetic excess returns formula is:

\[r_g = r_a - r_b\]

Returns calculation will be truncated by the one with the shorter length. Also, annualized returns are calculated
by the geometric annualized returns in both cases

	Parameters

	
	ra (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The assets returns vector or matrix

	rb (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The benchmark returns. If this is a vector and the asset returns is a matrix, then all assets returns (columns)
will be compared against this single benchmark. Otherwise, if this is a matrix, then assets will be compared
to each individual benchmark (i.e. column for column)

	freq (Optional[str]) – Frequency of the data. Use one of [daily, weekly, monthly, quarterly, semi-annually, yearly]

	geometric – If True, calculates the geometric excess returns. Otherwise, calculates the arithmetic excess returns

	Returns

	Excess returns of each strategy against benchmark

	Return type

	TimeSeriesData

Examples

>>> from perfana.datasets import load_etf
>>> from perfana.core import excess_returns
Get returns starting from the date where all etf has data
>>> etf = load_etf().dropna().pa.to_returns().dropna()
>>> excess_returns(etf, etf.VBK)
VBK 0.000000
BND -0.050737
VTI -0.009533
VWO -0.058573
dtype: float64

Relative Returns

	
perfana.core.returns.relative_returns(ra, rb, prefixes=('PRT', 'BMK'))

	Calculates the ratio of the cumulative performance for two assets through time

	Parameters

	
	ra (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The assets returns vector or matrix

	rb (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The benchmark returns

	prefixes – Prefix to apply to overlapping column names in the left and right side, respectively. This is also applied
when the column name is an integer (i.e. 0 -> PRT_0). It is the default name of the Series data if there
are no name to the Series

	Returns

	Returns a DataFrame of the cumulative returns ratio between 2 asset classes.
Returns a Series if there is only 2 compared classes.

	Return type

	TimeSeriesData

Examples

>>> from perfana.datasets import load_etf
>>> from perfana.core import relative_returns
Get returns starting from the date where all etf has data
>>> etf = load_etf().dropna().pa.to_returns().dropna()
>>> relative_returns(etf.tail(), etf.VBK.tail())
 VBK/VBK BND/VBK VTI/VBK VWO/VBK
Date
2019-02-25 1.0 0.996027 0.997856 1.009737
2019-02-26 1.0 1.004013 1.002591 1.013318
2019-02-27 1.0 0.997005 0.997934 1.000389
2019-02-28 1.0 1.001492 1.001461 0.998348
2019-03-01 1.0 0.987385 0.997042 0.988521

Risk

Risk API contains a series of functions that apply to a pandas DataFrame or Series or iterable TimeSeries like object
to calculate various forms of risk.

	Drawdown

	Drawdown Summary

Drawdown

	
perfana.core.risk.drawdown(data, weights=None, geometric=True, rebalance=True)

	Calculates the drawdown at each time instance.

If data is DataFrame-like, weights must be specified. If data is Series-like, weights
can be left empty.

	Parameters

	
	data (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The assets returns vector or matrix

	weights (Union[Iterable[Union[int, float]], ndarray, Series, None]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	geometric – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	Drawdown at each time instance

	Return type

	Series

Examples

>>> from perfana.datasets import load_hist
>>> from perfana.core import drawdown
>>> hist = load_hist().iloc[:, :7]
>>> weights = [0.25, 0.18, 0.24, 0.05, 0.04, 0.13, 0.11]
>>> drawdown(hist, weights).min()
-0.4007984968456346
>>> drawdown(hist.iloc[:, 0]).min()
-0.5491340502573534

import matplotlib.pyplot as plt

from perfana.core import drawdown
from perfana.datasets import load_hist

data = load_hist().iloc[:, :7]
weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]

dd = drawdown(data, weights)
plt.plot(dd.index, dd)
plt.title("Drawdown")
plt.xlabel("Time")
plt.ylabel("Drawdown Depth")
plt.show()

(Source code)

Drawdown Summary

	
perfana.core.risk.drawdown_summary(data, weights=None, geometric=True, rebalance=True, *, top=5)

	A summary of each drawdown instance. Output is ranked by depth of the drawdown.

If data is DataFrame-like, weights must be specified. If data is Series-like, weights
can be left empty.

	Parameters

	
	data (Union[DataFrame, Iterable[Union[int, float]], ndarray, Series]) – The assets returns vector or matrix

	weights (Union[Iterable[Union[int, float]], ndarray, Series, None]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	geometric – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	top (Optional[int]) – If None, returns all episodes. If specified, returns the top n episodes ranked by the depth
of drawdown.

	Returns

	A data frame summarizing each drawdown episode

	Return type

	DataFrame

Examples

>>> from perfana.datasets import load_hist
>>> from perfana.core import drawdown_summary
>>> hist = load_hist().iloc[:, :7]
>>> weights = [0.25, 0.18, 0.24, 0.05, 0.04, 0.13, 0.11]
>>> drawdown_summary(hist, weights)
 Start Trough End Drawdown Length ToTrough Recovery
0 2007-11-30 2009-02-28 2014-02-28 -0.400798 76 16 60
1 2000-04-30 2003-03-31 2004-02-29 -0.203652 47 36 11
2 1990-01-31 1990-11-30 1991-05-31 -0.150328 17 11 6
3 1998-04-30 1998-10-31 1999-06-30 -0.149830 15 7 8
4 1994-02-28 1995-03-31 1996-01-31 -0.132766 24 14 10
>>> drawdown_summary(hist.iloc[:, 0])
 Start Trough End Drawdown Length ToTrough Recovery
0 2007-11-30 2009-02-28 2014-05-31 -0.549134 79 16 63
1 2000-04-30 2003-03-31 2006-12-31 -0.474198 81 36 45
2 1990-01-31 1990-09-30 1994-01-31 -0.286489 49 9 40
3 1998-08-31 1998-09-30 1999-01-31 -0.148913 6 2 4
4 2018-10-31 2018-12-31 2019-03-31 -0.130014 6 3 3

Monte Carlo API

Monte Carlo API applies to a series of methods that apply to a 3 dimensional data cube where the dimensions represent the time, trials and assets respectively. For example, if the simulated cube projects 10 years of monthly data for 8 assets for 10000 trials (that is 10000 simulations), the cube will be a numpy array with shape (120, 10000, 8).

	Returns
	Annualized Returns

	Annualized Returns against Benchmark

	Annualized Quantile Returns

	Annualized Quantile Returns against Benchmark

	Returns Attribution

	Returns Distribution

	Returns Path

	Risk
	Portfolio Beta against Asset

	Portfolio Correlation against Asset

	CVaR Attribution

	CVaR Diversification Ratio

	Portfolio CVaR

	Diversification Ratio

	Drawdown Statistics

	Portfolio Empirical Covariance Matrix

	Risk Performance Benchmark

	Risk Performance Benchmark

	Tail Loss Statistics

	Tracking Error

	Volatility Attribution

	Portfolio Volatility

	Sensitivity
	Sensitivity of Portfolio to Shocks

	Sensitivity of Portfolio's Annualized Returns to Shock

	Sensitivity of Portfolio's Annualized Volatility to Shock

	Sensitivity of Portfolio's CVaR to Shock

Returns

	Annualized Returns

	Annualized Returns against Benchmark

	Annualized Quantile Returns

	Annualized Quantile Returns against Benchmark

	Returns Attribution

	Returns Distribution

	Returns Path

Annualized Returns

	
perfana.monte_carlo.returns.annualized_returns_m(data, weights, freq, geometric=True, rebalance=True)

	Calculates the annualized returns from the Monte Carlo simulation

The formula for annualized geometric returns is formulated by raising the compound return to the number of
periods in a year, and taking the root to the number of total observations. For the rebalance, geometric
returns, the annualized returns is derived by:

\[\begin{split}&y = M / s \\
&\frac{1}{N}\sum^N_i \left[\prod_j^T \left(1 + \sum^A_k (r_{ijk} \cdot w_k \right) \right]^{\frac{1}{y}} - 1\end{split}\]

where s is the number of observations in a year, and M is the total number of observations, N is
the number of trials in the simulation, T is the number of trials in the simulation and A is the
number of assets in the simulation.

For simple returns (geometric=FALSE), the formula for the rebalanced case is:

\[\frac{s}{NM} \left[\sum^N_i \sum^T_j \sum^A_k (r_{ijk} \cdot w_k) \right]\]

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	Annualized returns of the portfolio

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import annualized_returns_m
>>> cube = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> annualized_returns_m(cube, weights, 'month')
0.02111728739277985

Annualized Returns against Benchmark

	
perfana.monte_carlo.returns.annualized_bmk_returns_m(data, weights, bmk_weights, freq, geometric=True, rebalance=True)

	Calculates the returns of the portfolio relative to a benchmark portfolio.

The benchmark components must be placed after the portfolio components in the simulated returns cube.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	bmk_weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the benchmark portfolio.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	The portfolio returns relative to the benchmark

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import annualized_bmk_returns_m
>>> cube = load_cube()
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> bmk_weights = [0.65, 0.35]
>>> freq = "quarterly"
>>> annualized_bmk_returns_m(cube, weights, bmk_weights, freq)
-0.006819613944426206

Annualized Quantile Returns

	
perfana.monte_carlo.returns.annualized_quantile_returns_m(data, weights, quantile, freq, geometric=True, rebalance=True, interpolation='midpoint')

	Compute the q-th quantile of the returns in the simulated data cube.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	quantile (Union[float, Iterable[float]]) – Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	interpolation – This optional parameter specifies the interpolation method to use when the desired quantile
lies between two data points i < j:

	linear: i + (j - i) * fraction, where fraction
is the fractional part of the index surrounded by i
and j.

	lower: i.

	higher: j.

	nearest: i or j, whichever is nearest.

	midpoint: (i + j) / 2.

	Returns

	The returns of the portfolio relative to the benchmark at the specified quantile

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import annualized_quantile_returns_m
>>> cube = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> freq = "quarterly"
>>> q = 0.25
>>> annualized_quantile_returns_m(cube, weights, q, freq)
0.005468353416130167
>>> q = [0.25, 0.75]
>>> annualized_quantile_returns_m(cube, weights, q, freq)
array([0.00546835, 0.03845033])

Annualized Quantile Returns against Benchmark

	
perfana.monte_carlo.returns.annualized_bmk_quantile_returns_m(data, weights, bmk_weights, quantile, freq, geometric=True, rebalance=True, interpolation='midpoint')

	Compares the annualized returns against a benchmark at the specified quantiles.

The benchmark components must be placed after the portfolio components in the simulated returns cube.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	bmk_weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the benchmark portfolio.

	quantile (Union[float, Iterable[float]]) – Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	interpolation – This optional parameter specifies the interpolation method to use when the desired quantile
lies between two data points i < j:

	linear: i + (j - i) * fraction, where fraction
is the fractional part of the index surrounded by i
and j.

	lower: i.

	higher: j.

	nearest: i or j, whichever is nearest.

	midpoint: (i + j) / 2.

	Returns

	The returns of the portfolio over the benchmark at the specified quantiles

	Return type

	float or array_like of floats

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import annualized_bmk_quantile_returns_m
>>> cube = load_cube()
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> bmk_weights = [0.65, 0.35]
>>> freq = "quarterly"
>>> q = 0.25
>>> annualized_bmk_quantile_returns_m(cube, weights, bmk_weights, q, freq)
-0.010792419409674459
>>> q = [0.25, 0.75]
>>> annualized_bmk_quantile_returns_m(cube, weights, bmk_weights, q, freq)
array([-0.01079242, -0.0025487])

Returns Attribution

	
perfana.monte_carlo.returns.returns_attr(data, weights, freq, geometric=True, rebalance=True)

	Derives the returns attribution given a data cube and weights.

Notes

The return values are defined as follows:

	
	marginal
	The absolute marginal contribution of the asset class towards the portfolio returns.
It is essentially the percentage attribution multiplied by the portfolio returns.

	
	percentage
	The percentage contribution of the asset class towards the portfolio returns. This number
though named in percentage is actually in decimals. Thus 0.01 represents a 1% contribution.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	A named tuple of marginal and percentage returns attribution respectively. The marginal attribution
is the returns of the simulated data over time multiplied by the percentage attribution.

	Return type

	Attribution

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import returns_attr
>>> cube = load_cube()[..., :3]
>>> weights = [0.33, 0.34, 0.33]
>>> freq = "quarterly"
>>> attr = returns_attr(cube, weights, freq)
>>> attr.marginal
array([0.00996204, 0.00733369, 0.00963802])
>>> attr.percentage
array([0.36987203, 0.27228623, 0.35784174])
>>> attr.marginal is attr[0]
True
>>> attr.percentage is attr[1]
True

Returns Distribution

	
perfana.monte_carlo.returns.returns_distribution(data, weights, freq=None, annualize=True, geometric=True, rebalance=True)

	Calculates the returns distribution of the simulation cube

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Union[str, int, None]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1. If annualize is False, freq can be ignored.

	annualize – If true, the returns distribution values are annualized

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	A vector of the distribution of returns

	Return type

	Array

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import returns_distribution
>>> cube = load_cube()[..., :3]
>>> weights = [0.33, 0.34, 0.33]
>>> freq = "quarterly"
>>> returns_distribution(cube, weights, freq).shape
(1000,)

Returns Path

	
perfana.monte_carlo.returns.returns_path(data, weights, rebalance=True, quantile=None)

	Returns a matrix of the returns path of the portfolio.

The first axis represents the time and the second axis represents the trials.

If the quantile argument is specified, the specific quantile for each time period will be
returned. Thus, if the 0.75 quantile is specified, it is the 75th quantile for each time period and
not the path the 75th quantile in the terminal period took.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	quantile (Union[int, float, Iterable[Union[int, float]], ndarray, Series, None]) – Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive

	Returns

	The returns path for the portfolio

	Return type

	ndarray

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import returns_path
>>> cube = load_cube()[..., :3]
>>> weights = [0.33, 0.34, 0.33]
>>> returns_path(cube, weights).shape
(1000, 81)
>>> returns_path(cube, weights, quantile=0.75).shape # 75th quantile
(81,)
>>> returns_path(cube, weights, quantile=[0.25, 0.5, 0.75]).shape # 25th, 50th and 75th quantile
(3, 81)

import matplotlib.pyplot as plt
import numpy as np

from perfana.datasets import load_cube
from perfana.monte_carlo import returns_path

data = load_cube()[..., :7]
weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
quantile = [0.05, 0.25, 0.5, 0.75, 0.95]
color = np.array([
 (200, 200, 200),
 (143, 143, 143),
 (196, 8, 8),
 (143, 143, 143),
 (200, 200, 200),
]) / 255

paths = returns_path(data, weights, quantile=quantile)
n, t = paths.shape
x = np.arange(t)

fig = plt.figure(figsize=(8, 6))
sp = fig.add_subplot(111)
for i in reversed(range(n)):
 label = f"{int(quantile[i] * 100)}"
 sp.plot(x, paths[i], figure=fig, label=label, color=color[i])

sp.fill_between(x, paths[0], paths[-1], color=color[0])
sp.fill_between(x, paths[1], paths[-2], color=color[1])
sp.set_title("Cumulative returns path")
sp.set_xlabel("Time Period")
sp.set_ylabel("Returns")
sp.grid()
sp.legend(title="Percentile")
fig.show()

(Source code)

Risk

	Portfolio Beta against Asset

	Portfolio Correlation against Asset

	CVaR Attribution

	CVaR Diversification Ratio

	Portfolio CVaR

	Diversification Ratio

	Drawdown Statistics

	Portfolio Empirical Covariance Matrix

	Risk Performance Benchmark

	Risk Performance Benchmark

	Tail Loss Statistics

	Tracking Error

	Volatility Attribution

	Portfolio Volatility

Portfolio Beta against Asset

	
perfana.monte_carlo.risk.beta_m(cov_or_data, weights, freq=None, aid=0)

	Derives the portfolio beta with respect to the specified asset class

Notes

The asset is identified by its index (aid) on the covariance matrix / simulated
returns cube / weight vector. If a simulated returns data cube is given,
the frequency of the data must be specified. In this case, the empirical covariance
matrix would be used to derive the volatility.

	Parameters

	
	cov_or_data (ndarray) – Covariance matrix or simulated returns data cube.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the
covariance matrix shape or the simulated data’s last axis.

	freq (Union[str, int, None]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	aid – Asset index

	Returns

	Portfolio beta with respect to asset class.

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import portfolio_cov, beta_m
>>> data = load_cube()[..., :3] # first 3 asset classes only
>>> weights = [0.33, 0.34, 0.33]
>>> freq = 'quarterly'
>>> dm_eq_id = 0 # calculate correlation with respect to developing markets equity
>>> beta_m(data, weights, freq, dm_eq_id)
1.3047194776321622

Portfolio Correlation against Asset

	
perfana.monte_carlo.risk.correlation_m(cov_or_data, weights, freq=None, aid=0)

	Derives the portfolio correlation with respect to the specified asset class

Notes

The asset is identified by its index (aid) on the covariance matrix / simulated
returns cube / weight vector. If a simulated returns data cube is given,
the frequency of the data must be specified. In this case, the empirical covariance
matrix would be used to derive the volatility.

	Parameters

	
	cov_or_data (ndarray) – Covariance matrix or simulated returns data cube.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the
covariance matrix shape or the simulated data’s last axis.

	freq (Union[str, int, None]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	aid – Asset index

	Returns

	Portfolio correlation with respect to asset class

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import portfolio_cov, correlation_m
>>> data = load_cube()[..., :3] # first 3 asset classes only
>>> weights = [0.33, 0.34, 0.33]
>>> freq = 'quarterly'
>>> dm_eq_id = 0 # calculate correlation with respect to developing markets equity
>>> correlation_m(data, weights, freq, dm_eq_id)
0.9642297301278216

CVaR Attribution

	
perfana.monte_carlo.risk.cvar_attr(data, weights, alpha=0.95, rebalance=True, invert=True)

	Calculates the CVaR (Expected Shortfall) attribution for each asset class in the portfolio.

Notes

From a mathematical point of view, the alpha value (confidence level for calculation)
should be taken at the negative extreme of the distribution. However, the default is
set to ease the practitioner.

The return values are defined as follows:

	
	marginal
	The absolute marginal contribution of the asset class towards the portfolio CVaR.
It is essentially the percentage attribution multiplied by the portfolio CVaR.

	
	percentage
	The percentage contribution of the asset class towards the portfolio CVaR. This number
though named in percentage is actually in decimals. Thus 0.01 represents a 1% contribution.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	alpha – Confidence level for calculation.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	invert – Whether to invert the confidence interval level. See Notes.

	Returns

	A named tuple of relative and absolute CVaR (expected shortfall) attribution respectively.
The absolute attribution is the CVaR of the simulated data over time multiplied by the
percentage attribution.

	Return type

	Attribution

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import cvar_attr
>>> cube = load_cube()[..., :3]
>>> weights = [0.33, 0.34, 0.33]
>>> attr = cvar_attr(cube, weights, alpha=0.95)
>>> attr.marginal
array([-0.186001 , -0.35758411, -0.20281477])
>>> attr.percentage
array([0.24919752, 0.47907847, 0.27172401])
>>> attr.marginal is attr[0]
True
>>> attr.percentage is attr[1]
True

CVaR Diversification Ratio

	
perfana.monte_carlo.risk.cvar_div_ratio(data, weights, alpha=0.95, rebalance=True, invert=True)

	Calculates the CVaR (Expected Shortfall) tail diversification ratio of the portfolio

Notes

From a mathematical point of view, the alpha value (confidence level for calculation)
should be taken at the negative extreme of the distribution. However, the default is
set to ease the practitioner.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	alpha – Confidence level for calculation.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	invert – Whether to invert the confidence interval level. See Notes.

	Returns

	CVaR (Expected Shortfall) tail diversification ratio

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import cvar_div_ratio
>>> cube = load_cube()[..., :3]
>>> weights = [0.33, 0.34, 0.33]
>>> cvar_div_ratio(cube, weights)
0.8965390850633622

Portfolio CVaR

	
perfana.monte_carlo.risk.cvar_m(data, weights, alpha=0.95, rebalance=True, invert=True)

	Calculates the Conditional Value at Risk (Expected Shortfall) of the portfolio.

Notes

From a mathematical point of view, the alpha value (confidence level for calculation)
should be taken at the negative extreme of the distribution. However, the default is
set to ease the practitioner.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	alpha – Confidence level for calculation.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	invert – Whether to invert the confidence interval level. See Notes.

	Returns

	CVaR (Expected Shortfall) of the portfolio

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import cvar_m
>>> cube = load_cube()[..., :3]
>>> weights = [0.33, 0.34, 0.33]
>>> cvar_m(cube, weights)
-0.7463998716846179

Diversification Ratio

	
perfana.monte_carlo.risk.diversification_m(cov_or_data, weights, freq)

	Derives the diversification ratio of the portfolio

	Parameters

	
	cov_or_data (ndarray) – Covariance matrix or simulated returns data cube.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	Returns

	Tracking error of the portfolio

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import portfolio_cov, diversification_m
>>> data = load_cube()[..., :7] # first 7 asset classes
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> freq = 'quarterly'
>>> diversification_m(data, weights, freq)

Drawdown Statistics

	
perfana.monte_carlo.risk.drawdown_m(data, weights, geometric=True, rebalance=True)

	Calculates the drawdown statistics

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	geometric – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	A named tuple containing the average maximum drawdown and the drawdown path for each simulation
instance.

	Return type

	Drawdown

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import drawdown_m
>>> data = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> dd = drawdown_m(data, weights)
>>> dd.average
-0.3198714473717889
>>> dd.paths.shape
(80, 1000)

Portfolio Empirical Covariance Matrix

	
perfana.monte_carlo.risk.portfolio_cov(data, freq)

	Forms the empirical portfolio covariance matrix from the simulation data cube

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	Returns

	Empirical portfolio covariance matrix

	Return type

	array_like of float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import portfolio_cov
>>> data = load_cube()[..., :3] # first 3 asset classes only
>>> portfolio_cov(data, 'quarterly').round(4)
array([[0.0195, 0.0356, 0.021],
 [0.0356, 0.0808, 0.0407],
 [0.021 , 0.0407, 0.0239]])

Risk Performance Benchmark

	
perfana.monte_carlo.risk.prob_loss(data, weights, rebalance=True, terminal=False)

	Calculates the probability of the portfolio suffering a loss。

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	terminal – If True, this only compares the probability of a loss at the last stage. If False (default),
the calculation will take into account if the portfolio was “ruined” and count it as a loss
even though the terminal value is positive.

	Returns

	A named tuple containing the probability of underperformance and loss

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import prob_loss
>>> data = load_cube()
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> prob_loss(data, weights)
0.198

Risk Performance Benchmark

	
perfana.monte_carlo.risk.prob_under_perf(data, weights, bmk_weights, rebalance=True, terminal=False)

	Calculates the probability of the portfolio underperforming the benchmark at the terminal state

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	bmk_weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the benchmark portfolio.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	terminal – If True, this only compares the probability of underperformance at the last stage.
If False (default), the calculation will take into account if the portfolio was “ruined”
and count it as an underperformance against the benchmark even though the terminal value
is higher than the benchmark. If both portfolios are “ruined”, then it underperforms if
it is ruined earlier.

	Returns

	A named tuple containing the probability of underperformance and loss

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import prob_under_perf
>>> data = load_cube()
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> bmk_weights = [0.65, 0.35]
>>> prob_under_perf(data, weights, bmk_weights)
0.863

Tail Loss Statistics

	
perfana.monte_carlo.risk.tail_loss(data, weights, threshold=-0.3, rebalance=True)

	Calculates the probability and expectation of a tail loss beyond a threshold

Threshold by default is set at -0.3, which means find the probability that the portfolio loses more than
30% of its value and the expected loss.

Notes

The return values are defined as follows:

	
	prob
	Probability of having a tail loss exceeding the threshold

	
	expected_loss
	Value of the expected loss for the portfolio at the threshold

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	threshold – Portfolio loss threshold.

	rebalance – If True, portfolio is assumed to be rebalanced at every step.

	Returns

	A named tuple containing the probability and expected loss of the portfolio exceeding the threshold.

	Return type

	TailLoss

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import tail_loss
>>> data = load_cube()[..., :3] # first 3 asset classes only
>>> weights = [0.33, 0.34, 0.33]
>>> loss = tail_loss(data, weights, -0.3)
>>> loss.prob
0.241
>>> loss.expected_loss
-0.3978210273894446

Tracking Error

	
perfana.monte_carlo.risk.tracking_error_m(cov_or_data, weights, bmk_weights, freq)

	Calculates the tracking error with respect to the benchmark.

If a covariance matrix is used as the data, the benchmark components must be placed after the
portfolio components. If a simulated returns cube is used as the data, the benchmark components
must be placed after the portfolio components.

	Parameters

	
	cov_or_data (ndarray) – Covariance matrix or simulated returns data cube.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	bmk_weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the benchmark portfolio.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	Returns

	Tracking error of the portfolio

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import portfolio_cov, tracking_error_m
>>> data = load_cube()
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> bmk_weights = [0.65, 0.35]
>>> freq = 'quarterly'
>>> tracking_error_m(data, weights, bmk_weights, freq)
0.031183281273726802

Volatility Attribution

	
perfana.monte_carlo.risk.vol_attr(cov_or_data, weights, freq)

	Derives the volatility attribution given a data cube and weights.

Notes

The return values are defined as follows:

	marginal
	The absolute marginal contribution of the asset class towards the portfolio volatility.
It is essentially the percentage attribution multiplied by the portfolio volatility.

	percentage
	The percentage contribution of the asset class towards the portfolio volatility. This number
though named in percentage is actually in decimals. Thus 0.01 represents a 1% contribution.

	Parameters

	
	cov_or_data (ndarray) – Covariance matrix or simulated returns data cube.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Union[str, int]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	Returns

	A named tuple of relative and absolute volatility attribution respectively. The absolute attribution
is the volatility of the simulated data over time multiplied by the percentage attribution.

	Return type

	Attribution

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import vol_attr
>>> data = load_cube()[..., :3] # first 3 asset classes only
>>> weights = [0.33, 0.34, 0.33]
>>> freq = 'quarterly'
>>> attr = vol_attr(data, weights, freq)
>>> attr.marginal.round(4)
array([0.2352, 0.5006, 0.2643])
>>> attr.percentage.round(4)
array([0.0445, 0.0947, 0.05])
>>> attr.marginal is attr[0]
True
>>> attr.percentage is attr[1]
True

Portfolio Volatility

	
perfana.monte_carlo.risk.volatility_m(cov_or_data, weights, freq=None)

	Calculates the portfolio volatility given a simulated returns cube or a covariance matrix

Notes

If a simulated returns data cube is given, the frequency of the data must be specified.
In this case, the empirical covariance matrix would be used to derive the volatility.

	Parameters

	
	cov_or_data (ndarray) – Covariance matrix or simulated returns data cube.

	weights (Union[Iterable[Union[int, float]], ndarray, Series]) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the
covariance matrix shape or the simulated data’s last axis.

	freq (Union[str, int, None]) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	Returns

	Portfolio volatility.

	Return type

	float

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import portfolio_cov, volatility_m
>>> data = load_cube()[..., :3] # first 3 asset classes only
>>> weights = [0.33, 0.34, 0.33]
>>> freq = 'quarterly'
>>> cov_mat = portfolio_cov(data, freq).round(4) # empirical covariance matrix
>>> # Using covariance matrix
>>> volatility_m(cov_mat, weights)
0.1891091219375734
>>> # Using the simulated returns data cube
>>> volatility_m(data, weights, freq)
0.1891091219375734

Sensitivity

	Sensitivity of Portfolio to Shocks

	Sensitivity of Portfolio's Annualized Returns to Shock

	Sensitivity of Portfolio's Annualized Volatility to Shock

	Sensitivity of Portfolio's CVaR to Shock

Sensitivity of Portfolio to Shocks

	
perfana.monte_carlo.sensitivity.sensitivity_m(data, weights, freq, shock=0.05, geometric=True, rebalance=True, cov=None, cvar_cutoff=3, cvar_data=None, alpha=0.95, invert=True, names=None, leveraged=False, distribute=True)

	Calculates the sensitivity of adding and removing from the asset class on the portfolio.

This is a wrapper function for the 3 sensitivity calculations. For more granular usages, use the base
functions instead.

Notes

When given a positive shock and a “proportionate” distribution strategy, each asset class is given an
additional amount by removing from the other asset classes proportionately. For example, given a portfolio
with weights [0.1, 0.2, 0.3, 0.4], a shock of 5% to the first asset in the portfolio will result
in weights [0.15, 0.19, 0.28, 0.38]. A negative shock works by removing from the asset class and
adding to the other asset classes proportionately.

If the distribution strategy is set to False, the asset class’ weight is increased without removing
from the other asset classes. Thus the sum of the portfolio weights will not equal 1.

By default, the portfolio is not leveraged. This means that the asset class be shorted (negative shock) to
go below 0 and levered (positive shock) to go above 1. The asset class weight is thus capped between 0 and 1
by default. If the leverage option is set to True, then this value is no longer capped.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (array_like) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Frequency) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	shock (float) – The amount to shock each asset class by. A positive number represents adding to the asset class by
proportionately removing from the other asset class. A negative number represents removing from the
asset class and adding to the other asset class proportionately.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	cov (ndarray) – Asset covariance matrix

	cvar_cutoff (int) – Number of years to trim the data cube by for cvar calculation.

	cvar_data (np.ndarray) – If specified, will use this data cube instead of the main data cube for cvar calculations.

	alpha (float) – Confidence level for calculation.

	invert (bool) – Whether to invert the confidence interval level

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	names (list of str) – Asset class names

	leveraged (bool) – If True, asset weights are allowed to go below 0 and above 1. This represents that the
asset class can be shorted or levered.

	distribute (bool) – If True, asset value changes are distributed proportionately to all other asset classes. See Notes
for more information.

	Returns

	A dataframe with the asset names as the indices and with columns (ret, vol, cvar) representing
returns, volatility and CVaR respectively.

	Return type

	DataFrame

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import sensitivity_m
>>> data = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> freq = 'quarterly'
>>> shock = 0.05 # 5% absolute shock
>>> sensitivity_m(data, weights, freq, shock)
 ret vol cvar
Asset_1 0.022403 0.113284 -0.485220
Asset_2 0.020484 0.121786 -0.542988
Asset_3 0.022046 0.113964 -0.492411
Asset_4 0.020854 0.109301 -0.478581
Asset_5 0.020190 0.104626 -0.459786
Asset_6 0.020335 0.106652 -0.467798
Asset_7 0.020220 0.106140 -0.468692

Sensitivity of Portfolio’s Annualized Returns to Shocks

	
perfana.monte_carlo.sensitivity.sensitivity_returns_m(data, weights, freq, shock=0.05, geometric=True, rebalance=True, names=None, leveraged=False, distribute=True)

	Calculates the sensitivity of a shock to the annualized returns of the portfolio

Notes

When given a positive shock and a “proportionate” distribution strategy, each asset class is given an
additional amount by removing from the other asset classes proportionately. For example, given a portfolio
with weights [0.1, 0.2, 0.3, 0.4], a shock of 5% to the first asset in the portfolio will result
in weights [0.15, 0.19, 0.28, 0.38]. A negative shock works by removing from the asset class and
adding to the other asset classes proportionately.

If the distribution strategy is set to False, the asset class’ weight is increased without removing
from the other asset classes. Thus the sum of the portfolio weights will not equal 1.

By default, the portfolio is not leveraged. This means that the asset class be shorted (negative shock) to
go below 0 and levered (positive shock) to go above 1. The asset class weight is thus capped between 0 and 1
by default. If the leverage option is set to True, then this value is no longer capped.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (array_like) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	shock (float) – The amount to shock each asset class by. A positive number represents adding to the asset class by
proportionately removing from the other asset class. A negative number represents removing from the
asset class and adding to the other asset class proportionately.

	freq (Frequency) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	geometric (bool) – If True, calculates the geometric mean, otherwise, calculates the arithmetic mean.

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	names (list of str) – Asset class names

	leveraged (bool) – If True, asset weights are allowed to go below 0 and above 1. This represents that the
asset class can be shorted or levered.

	distribute (bool) – If True, asset value changes are distributed proportionately to all other asset classes. See Notes
for more information.

	Returns

	A series with asset names as the index and annualized returns as its value

	Return type

	Series

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import sensitivity_returns_m
>>> data = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> freq = 'quarterly'
>>> shock = 0.05 # 5% absolute shock
>>> sensitivity_returns_m(data, weights, freq, shock)
Asset_1 0.022403
Asset_2 0.020484
Asset_3 0.022046
Asset_4 0.020854
Asset_5 0.020190
Asset_6 0.020335
Asset_7 0.020220
Name: ret, dtype: float64

Sensitivity of Portfolio’s Annualized Volatility to Shocks

	
perfana.monte_carlo.sensitivity.sensitivity_vol_m(cov_or_data, weights, freq=None, shock=0.05, names=None, leveraged=False, distribute=True)

	Calculates the sensitivity of a shock to the annualized volatility of the portfolio

	Parameters

	
	cov_or_data (ndarray) – Monte carlo simulation data or covariance matrix. If simulation cube, this must be 3 dimensional with
the axis representing time, trial and asset respectively and frequency will also need to be specified.

	weights (array_like) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	freq (Frequency) – Frequency of the data. Can either be a string (‘week’, ‘month’, ‘quarter’, ‘semi-annual’, ‘year’) or
an integer specifying the number of units per year. Week: 52, Month: 12, Quarter: 4, Semi-annual: 6,
Year: 1.

	shock (float) – The amount to shock each asset class by. A positive number represents adding to the asset class by
proportionately removing from the other asset class. A negative number represents removing from the
asset class and adding to the other asset class proportionately.

	names (list of str) – Asset class names

	leveraged (bool) – If True, asset weights are allowed to go below 0 and above 1. This represents that the
asset class can be shorted or levered.

	distribute (bool) – If True, asset value changes are distributed proportionately to all other asset classes. See Notes
for more information.

	Returns

	A series with asset names as the index and annualized volatility as its value

	Return type

	Series

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import sensitivity_vol_m
>>> data = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> freq = 'quarterly'
>>> shock = 0.05 # 5% absolute shock
>>> sensitivity_vol_m(data, weights, freq, shock)
Asset_1 0.113284
Asset_2 0.121786
Asset_3 0.113964
Asset_4 0.109301
Asset_5 0.104626
Asset_6 0.106652
Asset_7 0.106140
Name: vol, dtype: float64

Sensitivity of Portfolio’s CVaR to Shocks

	
perfana.monte_carlo.sensitivity.sensitivity_cvar_m(data, weights, shock=0.05, alpha=0.95, rebalance=True, invert=True, names=None, leveraged=False, distribute=True)

	Calculates the sensitivity of a shock to the CVaR of the portfolio

Notes

When given a positive shock and a “proportionate” distribution strategy, each asset class is given an
additional amount by removing from the other asset classes proportionately. For example, given a portfolio
with weights [0.1, 0.2, 0.3, 0.4], a shock of 5% to the first asset in the portfolio will result
in weights [0.15, 0.19, 0.28, 0.38]. A negative shock works by removing from the asset class and
adding to the other asset classes proportionately.

If the distribution strategy is set to False, the asset class’ weight is increased without removing
from the other asset classes. Thus the sum of the portfolio weights will not equal 1.

By default, the portfolio is not leveraged. This means that the asset class be shorted (negative shock) to
go below 0 and levered (positive shock) to go above 1. The asset class weight is thus capped between 0 and 1
by default. If the leverage option is set to True, then this value is no longer capped.

	Parameters

	
	data (ndarray) – Monte carlo simulation data. This must be 3 dimensional with the axis representing time, trial
and asset respectively.

	weights (array_like) – Weights of the portfolio. This must be 1 dimensional and must match the dimension of the data’s
last axis.

	shock (float) – The amount to shock each asset class by. A positive number represents adding to the asset class by
proportionately removing from the other asset class. A negative number represents removing from the
asset class and adding to the other asset class proportionately.

	alpha (float) – Confidence level for calculation.

	invert (bool) – Whether to invert the confidence interval level

	rebalance (bool) – If True, portfolio is assumed to be rebalanced at every step.

	names (list of str) – Asset class names

	leveraged (bool) – If True, asset weights are allowed to go below 0 and above 1. This represents that the
asset class can be shorted or levered.

	distribute (bool) – If True, asset value changes are distributed proportionately to all other asset classes. See Notes
for more information.

	Returns

	A series with asset names as the index and CVaR as its value

	Return type

	Series

Examples

>>> from perfana.datasets import load_cube
>>> from perfana.monte_carlo import sensitivity_cvar_m
>>> data = load_cube()[..., :7]
>>> weights = [0.25, 0.18, 0.13, 0.11, 0.24, 0.05, 0.04]
>>> freq = 'quarterly'
>>> shock = 0.05 # 5% absolute shock
>>> sensitivity_cvar_m(data, weights, shock)
Asset_1 -0.485220
Asset_2 -0.542988
Asset_3 -0.492411
Asset_4 -0.478581
Asset_5 -0.459786
Asset_6 -0.467798
Asset_7 -0.468692
Name: cvar, dtype: float64

Datasets API

Data sets contain a series of python data objects to help get the user started on the package.

	Load Sample Simulation Data Cube

	Load ETF Data

	Load Swiss Market Index

Load Sample Simulation Data Cube

	
perfana.datasets.base.load_cube(*, download=False)

	Loads a sample Monte Carlo simulation of 9 asset classes.

The dimension of the cube is 80 * 1000 * 9. The first axis represents the time, the second
represents the number of trials (simulations) and the third represents each asset class.

	Parameters

	download (bool) – If True, forces the data to be downloaded again from the repository. Otherwise, loads the data from the
stash folder

	Returns

	A data cube of simulated returns

	Return type

	ndarray

Load ETF Data

	
perfana.datasets.base.load_etf(*, date_as_index=True, download=False)

	Dataset contains prices of 4 ETF ranging from 2001-06-15 to 2019-03-01.

	Parameters

	
	date_as_index (bool) – If True, sets the first column as the index of the DataFrame

	download (bool) – If True, forces the data to be downloaded again from the repository. Otherwise, loads the data from the
stash folder

	Returns

	A data frame containing the prices of 4 ETF

	Return type

	DataFrame

Load Swiss Market Index

	
perfana.datasets.base.load_smi(*, as_returns=False, download=False)

	Dataset contains the close prices of all 20 constituents of the Swiss Market Index (SMI) from
2011-09-09 to 2012-03-28.

	Parameters

	
	as_returns (bool) – If true, transforms the price data to returns data

	download (bool) – If True, forces the data to be downloaded again from the repository. Otherwise, loads the data from the
stash folder

	Returns

	A data frame of the closing prices of all 20 constituents of the Swiss Market Index

	Return type

	DataFrame

Index

 A
 | B
 | C
 | D
 | E
 | L
 | P
 | R
 | S
 | T
 | V

A

 	
 	active_premium() (in module perfana.core.returns)

 	annualized_bmk_quantile_returns_m() (in module perfana.monte_carlo.returns)

 	annualized_bmk_returns_m() (in module perfana.monte_carlo.returns)

 	
 	annualized_quantile_returns_m() (in module perfana.monte_carlo.returns)

 	annualized_returns() (in module perfana.core.returns)

 	annualized_returns_m() (in module perfana.monte_carlo.returns)

B

 	
 	beta_m() (in module perfana.monte_carlo.risk)

C

 	
 	correlation_m() (in module perfana.monte_carlo.risk)

 	correlation_measure() (in module perfana.core.relative)

 	
 	cvar_attr() (in module perfana.monte_carlo.risk)

 	cvar_div_ratio() (in module perfana.monte_carlo.risk)

 	cvar_m() (in module perfana.monte_carlo.risk)

D

 	
 	diversification_m() (in module perfana.monte_carlo.risk)

 	drawdown() (in module perfana.core.risk)

 	
 	drawdown_m() (in module perfana.monte_carlo.risk)

 	drawdown_summary() (in module perfana.core.risk)

E

 	
 	excess_returns() (in module perfana.core.returns)

L

 	
 	load_cube() (in module perfana.datasets.base)

 	
 	load_etf() (in module perfana.datasets.base)

 	load_smi() (in module perfana.datasets.base)

P

 	
 	portfolio_cov() (in module perfana.monte_carlo.risk)

 	
 	prob_loss() (in module perfana.monte_carlo.risk)

 	prob_under_perf() (in module perfana.monte_carlo.risk)

R

 	
 	relative_price_index() (in module perfana.core.relative)

 	relative_returns() (in module perfana.core.returns)

 	
 	returns_attr() (in module perfana.monte_carlo.returns)

 	returns_distribution() (in module perfana.monte_carlo.returns)

 	returns_path() (in module perfana.monte_carlo.returns)

S

 	
 	sensitivity_cvar_m() (in module perfana.monte_carlo.sensitivity)

 	sensitivity_m() (in module perfana.monte_carlo.sensitivity)

 	
 	sensitivity_returns_m() (in module perfana.monte_carlo.sensitivity)

 	sensitivity_vol_m() (in module perfana.monte_carlo.sensitivity)

T

 	
 	tail_loss() (in module perfana.monte_carlo.risk)

 	
 	tracking_error_m() (in module perfana.monte_carlo.risk)

V

 	
 	vol_attr() (in module perfana.monte_carlo.risk)

 	
 	volatility_m() (in module perfana.monte_carlo.risk)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Perfana’s documentation!

 		
 Getting Start

 		
 Reference - Function Reference

 		
 Core API

 		
 Relative

 		
 Returns

 		
 Risk

 		
 Monte Carlo API

 		
 Returns

 		
 Risk

 		
 Sensitivity

 		
 Datasets API

 		
 Load Sample Simulation Data Cube

 		
 Load ETF Data

 		
 Load Swiss Market Index

